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Abstract 

We applied a deep‐learning approach in order to develop a neural network able to detect and 
identify macro‐invertebrate organisms within images of benthos bycatch collected in the Southern 
Ocean. We used the Faster RCNN architecture and fine‐tuning approach. To perform the transfer‐
learning, we used an annotated dataset of 59,756 images of organisms identified within 1,845 
images of lots, covering eleven taxa: Echinodermata, Asteroidea, Arthropoda, Annelida, Chordata, 
Hemichordata, Cnidaria, Porifera, Bryozoa, Brachiopoda and Mollusca. The resulting network, not 
yet efficient enough to obtain precise identifications, is able to provide detection and 
classification of organisms with a good level of accuracy considering the limited quality of the 
images used for training. We present this study as a proof of concept for teams involved in the 
management of collections of macro‐invertebrate images. 
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INTRODUCTION

the use of deep-learning approaches in bio-computing 
has considerably increased in the last few years because 
of strong improvement of calculation facilities and avail-
ability of massive datasets. this new approach is part of the 
machine-learning family of algorithms, i.e. techniques which 
commonly used in ecology for modelling species and com-
munity distributions (e.g. elith et al., 2008). the main point 
distinguishing deep-learning techniques from other artifi-
cial intelligence approaches is the capacity to handle mas-
sive datasets with no need to control the learning process. 
the modeller provides the solution to the machine and the 
machine recreates an algorithm which is able to find the solu-
tion. The implementation is processed by training artificial 
neural networks whose design is inspired by the functioning 

of real biological neural networks. this approach is suitable 
to build predictive tools in scientific contexts where explana-
tory parameters of a series of observations are unknown or 
extremely complex, preventing the possibility to use super-
vised algorithms (for more information see Goodfellow et 
al., 2016).

the use of deep-learning in ecology covers various 
fields, such as population dynamics, landscape ecology, 
functioning of ecosystems or conservation biology (Christin 
et al., 2019; Borowiec et al., 2022). their scale ranges from 
the individual level to global, including applications such 
as molecular data (Derkarabetian et al., 2019) or the clas-
sification and analysis of massive bio-acoustic (Mac Aodha 
et al., 2018) and image datasets (Hansen et al., 2020). in 
the context of the scientific monitoring of the French fish-
eries of the southern ocean (Martin et al., 2021), we have 

Abstract. – We applied a deep-learning approach in order to develop a neural network able to detect and iden-
tify macro-invertebrate organisms within images of benthos bycatch collected in the southern ocean. We used 
the Faster RCNN architecture and fine-tuning approach. To perform the transfer-learning, we used an annotated 
dataset of 59,756 images of organisms identified within 1,845 images of lots, covering eleven taxa: Echinoder-
mata, Asteroidea, Arthropoda, Annelida, Chordata, Hemichordata, Cnidaria, Porifera, Bryozoa, Brachiopoda and 
Mollusca. The resulting network, not yet efficient enough to obtain precise identifications, is able to provide 
detection and classification of organisms with a good level of accuracy considering the limited quality of the 
images used for training. We present this study as a proof of concept for teams involved in the management of 
collections of macro-invertebrate images.

Résumé. – Utiliser l’apprentissage profond pour l’identification automatique d’images de macro-invertébrés 
marins issus de captures accessoires de benthos : une preuve de concept.

Nous avons utilisé une technique d’apprentissage profond pour développer un réseau de neurones capable de 
détecter et d’identifier des macro-invertébrés au sein d’images de lots d’organismes. Nous avons retenu l’archi-
tecture Faster RCNN. Pour réaliser le transfert d’apprentissage, nous avons utilisé une collection de 59756 ima-
ges annotées d’organismes détectés et identifiés au sein de 1845 images de lots. Cette collection comprend onze 
groupes taxonomiques : echinodermata, Asteroidea, Arthropoda, Annelida, Chordata, Hemichordata, Cnidaria, 
Porifera, Bryozoa, Brachiopoda et Mollusca. S’il n’est pas encore suffisamment performant pour permettre des 
identifications fines, le réseau que nous avons obtenu est capable de détecter et classifier les organismes avec un 
bon niveau de précision compte tenu de la qualité limitée des images de la base d’entraînement. Nous présentons 
cette étude comme une preuve de concept pour les équipes impliquées dans la gestion des collections d’images 
de macro-invertébrés et souhaitant implémenter des techniques d’intelligence artificielle.
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developed a database including 92,447 images of epibenthic 
marine macro-invertebrate bycatch organisms (Martin et 
al., 2023). this database has been fully annotated, with the 
recording of organism identification (varying from species 
to phylum level) and a storage structure including images 
of lots (Fig. 1) and images of organisms, which have been 
obtained by cropping the images of lots (Fig. 2). We decided 
to use this original dataset to test the possibility of develop-
ing a neural network able to detect and classify automatically 
macro-invertebrates in images of lots. the main issue of this 
project was to assess the possibility of using this technology 
in a context characterized by the limited quality of raw data 
and the complexity of forms to be identified. Various deep-
learning projects demonstrated the possibility of develop-
ing networks able to identify images of organisms (Joly et 
al., 2016; Körschens et al., 2018; norouzzadeh et al., 2018; 
Willi et al., 2019; Guo et al., 2020). In our project, we had to 
face three specific constraints: 

– the large diversity of anatomical structures, shapes and 
general aspect of the benthic marine macro-invertebrates, 
due to the huge diversity of taxa (Fig. 1);

– the possibility of observing strong similarities in the 
aspect of organisms belonging to different taxa, due to evo-

lutionary convergence affecting their anatomical structures 
(Fig. 2);

– the field constraints not allowing controlled conditions 
for the photographic capture of organisms, which induces 
important limitations for the quality of the images: overlap 
between organisms, non-standardized layout of the organ-
isms, limited definition of the images, limited conditions 
of lighting, and non-standardized distance, focus and angle 
(Fig. 3).

Here, we present the technique we used to address these 
issues and the results we have obtained as a proof of concept 
for further developments, for the benefits of teams involved 
in the curation of databases including images of macro-
invertebrates such as the SeaLifeBase project (Palomares 
and Pauly, 2021).

MATERIALS AND METHODS

The detection network
We performed transfer learning through the fine-tuning 

of an existing detection network, namely the Faster RCNN 
(region based Convolutional neural network) architecture 

Figure 1. – Image of a batch of macro-invertebrate bycatch organ-
isms from Kerguelen Exclusive Economic Zone (Poker 4 survey, 
2017), including various species of sponges, ascidians, corals and 
echinoderms.

Figure 2. – Three images of organisms 
obtained by cropping images of lots; 
from left to right: Chalinidae (Porifera), 
Polyclinidae (Chordata), Hormatidae 
(Cnidaria).

Figure 3. – Image of a batch of macro-invertebrate bycatch organ-
isms from Kerguelen Exclusive Economical Zone (Poker 4 survey, 
2017), including corals, a crinoïd, an ophiurid, a sea urchin and a 
brachiopoda; organisms are incomplete and have been quickly 
spread out over a small plate to take the picture.
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(ren et al., 2015). It was retained due to its efficiency for 
objects detection and its flexibility (ren et al., 2015). A con-
volutional neural network is used to extract features from 
input images. then, proposals (bounding boxes) are gener-
ated by another network (region Proposal network, rPn). 
Features corresponding to these proposal regions are then 
fed to a fully connected classification network for final object 
(organisms in our case) identification. Before this classifica-
tion step, the sizes of the bounding boxes proposed by the 
rPn are standardized by a roi (region of interest) pooling 
layer. By including the RPN, Faster RCNN constitutes an 
improvement compared to the first generation of RCNN net-
works using selective search algorithms to generate proposi-
tions to be classified.

Training of the network
Fine-tuning is a classical approach to adapt a network 

trained on generic object databases to databases that are 
more specific and may exhibit structures and acquisition 
conditions that strongly differ from the initial training data-
base. such approaches have been regularly used to classify 
medical images (Zhou et al., 2017) or specific object types 
(Chu et al., 2016). 

training is processed using the Pytorch (Paszke et al., 
2019) framework and the torchvision library (Marcel and 
rodriguez, 2010). The library contains a Faster RCNN net-
work already trained on the dataset CoCo (including 330 K 
images and 80 classes, see lin et al., 2014) to the detection 
of an important diversity of basic shapes and forms. Mean 
values and standard deviation are used for normalization 
(three for each colour channel).

the database Bendima (Martin et al., 2023) was used 
for the transfer learning. to train the network, we selected 
a set of images collected during scientific surveys in the 
Kerguelen exclusive economic Zone. We consider this to 
be the best available dataset of Bendima regarding quantity 
of organisms, diversity of taxa, diversity of shoot-
ing conditions, precision of the identifications and 
ecological representativity. the dataset resulting 
from this selection consists in 59,756 images of 
single organisms or colonies (Fig. 2) obtained by 
saving crops extracted from 1,845 images of lots 
(Figs 1, 3). eleven taxa were considered, includ-
ing ten phyla and one taxonomic class: echinoder-
mata, Asteroidea, Arthropoda, Annelida, Chordata, 
Hemichordata, Cnidaria, Porifera, Bryozoa, Bra-
chiopoda and Mollusca. For the computing proc-
ess on which the network training was based, such 
grouping provided object classes including enough 
contents.

Images from 1,600 lots out of 1,845 were used 
for the training. Two classification strategies were 
investigated. A first network (network 1) was based 

on the use of the Cross entropy as a loss function. optimi-
zation was obtained with an Adam gradient descent (initial 
learning rate = 0.0001, during 50 epochs). A second network 
(network 2) was obtained with a weighted loss function to 
compensate the imbalance of classes, with the same gradient 
descent strategy, also during 50 epochs.

Evaluation
to evaluate performances, images from a randomly 

selected sample of 245 lots out of 1,845 were used as a 
testing dataset. Assessment was performed by calculating 
the precision and the recall. Precision indicates the propor-
tion of correct classifications of predicted bounding boxes. 
Recall indicates the proportion of well-detected objects. 
Indices are calculated as follows: Precision = TP / (TP + FP) 
and Recall = TP / (TP + FN), where TP = True positive, 
FP = False positive, FN = False negative.

RESULTS

the two trained convolutional networks presented con-
trasting detection and classification results. The network 1 
reached the highest mean precision value (0.57 vs 0.55) 
when the network 2 reached the highest mean recall value 
(0.52 vs 0.41).

Checking the indices for each class of object revealed also 
strong divergences in the performance of the two networks 
depending of the taxon which was considered (table i). net-
work 1 and network 2 both presented the highest perform-
ance for the Echinodermata and Asteroidea object classes 
(excepted the mean recall of echinodermata, which dropped 
to 0.38 for network 1, when network 2 reached 0.9). For 
both networks, performance then decreased for Arthropoda, 
Annelida and Chordata. Mean precision and mean recall of 
network 1 drop to 0 for Hemichordata, Cnidaria, Porifera, 

Table I. – Mean values of Precision and Recall obtained for each object class 
of network 1 and network 2.

network 1
Mean precision

network 1
Mean recall

network 2
Mean precision

network 2
Mean recall

echinodermata 0.74 0.38 0.73 0.90
Asteroidea 0.62 0.78 0.67 0.85
Arthropoda 0.28 0.40 0.51 0.15
Annelida 0.22 0.15 0.5 0.60
Chordata 0.05 0.04 0.28 0.26
Hemichordata 0 0 0.25 0.60
Cnidaria 0 0 0.17 0.25
Porifera 0 0 0 0
Bryozoa 0 0 0 0
Brachiopoda 0 0 0 0
Mollusca 0 0 0 0
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Bryozoa, Brachiopoda and Mollusca. network 2 presented 
a low performance for Hemichordata and Cnidaria, with low 
mean values of precision and recall, which dropped to 0 for 
the four remaining groups. Despite a relatively high variabil-
ity in classification accuracy depending on the taxon, these 
results showed that the fine-tuned networks indeed had the 
ability to reasonably classify images from the Bendima data-
set, provided that annotated images of the considered taxon 
are abundant enough. 

Figure 4 shows an example of the use of the network 2, 
with detection and classification performed on the image 
of a lot containing six echinodermata organisms from dif-
ferent species, presenting various forms, sizes and colours: 
one fragment of an ophiuroid (the body and basal part of the 
arms of a Gorgonocephalus chilensis (Philippi, 1858)) and 
five Asteroidea. The network did not detect one of the Aster-
oidea (Pteraster cf affinis smith, 1876) but well detected 
the four others (Porania antarctica e. A. smith, 1876, Hip-
pasteria cf phrygiana (Parelius, 1768), Bathybiaster loripes 
sladen, 1889 and Diplasterias meridionalis (Perrier, 1875)). 
Diplasterias meridionalis was over-detected, with a sec-
ond region partly covering the organism. Gorgonocephalus 
chilensis was also over-detected, with two detections of the 
full fragment, one detection of the body only and one detec-
tion of the base of one arm. All the detected Asteroidea were 
well attributed to the Asteroidea object class. Three detec-
tions of Gorgonocephalus chilensis were rightly attributed 
to the echinodermata. one detection of the full fragment 
was false and attributed to the Cnidaria object class.

Figure 5 shows an example of the use of network 2 on the 
image of a lot containing one fragment of an Asteroidea (the 
body of a sea star, Labidiaster annulatus sladen, 1889) and 
28 Polyclinidae ascidians. network 2 over-detected Labidi-

aster annulatus with two detections, both attributed not to 
the Asteroidea object class but attributed to the Echinoder-
mata object class, which was less accurate. Only one Ascid-
ian was not detected, and four of them were detected two 
times. All the Ascidians were well attributed to the Chordata 
object class, excepted three of them resulting from over-
detection: one was attributed to the Cnidaria object-class and 
two were attributed to the Echinodermata object class.

Figure 6 shows an example based on the image of a lot 
containing only three organisms, with no overlap: the frag-
ment of an ophiuroid of the genus Ophiura (body and basal 
part of the arms), a fragment of a coral and a fragment of 

Figure 4. – Example of detection and classification obtained with 
an image of sea stars with network 2; red squares and annotations 
have been provided by the computer with no human action.

Figure 5. – Example of detection and classification obtained with 
an image including Ascidians and a sea star with network 2; red 
squares and annotations have been provided by the computer with 
no human action.

Figure 6. – Example of detection and classification obtained with 
an image including an ophiuroid, a piece of coral and a sea star 
with network 2; red squares and annotations have been provided by 
the computer with no human action.
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an ophiuroid, Gorgonocephalus chilensis (body and basal 
part of the arms). All three organisms were well detected by 
the network. Gorgonocephalus chilensis was detected two 
times, both regions covering only a part of the organism. the 
three organisms were rightly attributed to the echinodermata 
and Cnidaria object classes.

Figure 7 shows an example based on the image of a lot 
containing 15 real organisms of epibenthic macro-inverte-
brates, but with also two pieces of sea weed, one fixed on 
a stone. invertebrates were composed by one Mollusca, 
Provocator pulcher R. B. Watson, 1882, and 14 Crinoids, 
Promachocrinus kerguelensis. Provocator pulcher was well 
detected, but mistaken for an Ascidian and attributed to the 
Chordata object class. Only two Crinoids were undetected 
by the network, and four of them were over-detected. All 
of them were rightly attributed to the Echinodermata object 
class, except the over-detections, attributed to the Cnidaria 
object class. Moreover, the network has not been confused 
by seaweeds and stones, which were not detected as epiben-
thic macro-invertebrate organisms.

DISCUSSION

This first experiment is a success, and a proof of concept 
for the use of deep-learning for the treatment of images of 
marine macro-invertebrate bycatch. Given the limited quality 
of the images used for the training of the networks, the results 
in terms of detection and classification are both encouraging. 
For now, only detection could be used to develop a tool for 
automatic cropping of massive sets of images and to perform 
data mining to obtain a preliminary estimation of the number 

of organisms (especially for the most common and abundant 
species, for instance the sea stars). the quality of detection 
and classification is not yet sufficient enough to extract auto-
matically reliable identifications.

From this experiment, we can first conclude that deep-
learning methods can perform detection and classification 
of specimens of marine invertebrates, but under two condi-
tions: the examples of crops representing a given group has 
to be numerous and diverse enough. the increase of the size 
of Bendima could be a first goal to address this issue (short-
en and Khoshgoftaar, 2019). improvements in the learning 
strategy should be explored. the available dataset would be 
easily enriched without the need of new records by applying 
transformations on the images, for instance by rotating or 
flipping the crops. This would quickly increase the diversity 
of the training dataset, in order to make the deep-learning 
process more powerful (Perez and Wang, 2017; Mikolajc-
zyk and Grochowski, 2018; Pacheco and Krohling, 2021). 
Moreover, strategies taking advantage of the nested structure 
of the classes should be explored. Here, images have been 
pooled without considering the nested structure of the data 
resulting from the taxonomic ranks. improvement of the 
learning process should be based on the use of the Phylum/
Class/Order/Family/Genus/Species information attached 
to each image of organism. Furthermore, additional infor-
mation could be implemented in the learning process, with 
complementary annotations of the images (Lopez-Fuentes et 
al., 2017; Pritt and Chern, 2017; ellen et al., 2019). this may 
include information about the quality of the images (e.g. if 
the organism is complete or not); anatomical structures (e.g. 
which anatomical parts of each organism are visible); or geo-
graphical location and depth, to weight detection probability 
by the known distribution of the species.

We believe that the main interest of the deep-learning 
approach is the possibility of recording the “human brain-
based” process of taxa identification, which is performed 
without a computer, just with knowledge and naturalist 
skills, by any author of a study. in the future, when such 
approach will be improved enough, authors could provide 
the recording of their brain-based taxa identification process 
within the ‘supplementary materials’ section of an article, 
in the form of a trained network stored in a computer file, 
contributing to improve reproducibility of the research. such 
recording could be shared with other scientists, to be applied 
to other datasets, allowing comparison studies. this possi-
bility would be of interest when recording the brain-based 
identification process performed by a specialist in the field 
of taxonomy, so that it may be used in the field of ecology. 
this could be a suitable solution to complete the barcoding 
approach (Hebert et al., 2003; ratnasingham and Hebert, 
2007) in response to the lack of experts in systematics (Cos-
tello et al., 2013). 

Figure 7. – Example of detection and classification obtained with 
an image including Crinoïds, a Gastropod and pieces of seaweed 
with network 2; red squares and annotations have been provided by 
the computer with no human action. 
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Finally, the recording of a collective brain-based iden-
tification process, based on combined identifications from 
many contributors, may allow two primary improvements: 

1 – Improved reliability of automatic identification tools 
based on such recordings.

2 – The possibility to base organism identifications on a 
consensus, which could be an achievement in conservation 
contexts involving divergent stakeholders such as conserva-
tion planning studies or protected areas design (yates and 
schoeman, 2015).
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